SMARTFACADE BLACK 35

Toda nuestra gama de lanas minerales cumplen con: (🧲 🗹

Descripción

Aislamiento térmico y acústico en lana mineral de vidrio. Panel semirrígido. Incombustible en su reacción frente al fuego (Euroclase A1) y no hidrófilo

Ligante de origen vegetal conocido como ETechnology, un 85% de sus materiales son renovables. Sin fenoles ni formaldehídos añadidos.

Lana mineral respetuosa con los sellos más exigentes en Calidad de Aire Interior, Eurofins Gold por su baja emisión de COVs.

Ventajas

- Óptimo aislamiento térmico y acústico.
- Gracias al tejido negro: excelente resistencia mecánica y al desgarro y protege la lana durante fase de montaje.
- Se adapta a las posibles irregularidades de fachada.
- Uso de hasta un 80% de material reciclado para su fabricación.
- Eliminación efecto "windwashing" gracias al velo negro.
- No sirve de soporte para la proliferación de hongos y bacterias.
- Mantiene las prestaciones termoacústicas a lo largo de la vida útil del edificio.

Campos de aplicación

- ✓ Fachada ventilada, tanto en obra nueva como en rehabilitación de edificios sobre soporte placa de yeso cementosa o ladrillo.
- ✓ Acondicionamiento acústico de falsos techos: no se recomienda colocar el velo visto sobre falsos techos solo con perfilería.

Sellos ambientales

Datos técnicos

	VALOR (SÍMBOLO)	UNIDAD	NORMATIVA	
Conductividad térmica	0,035 (λD)	$W / m \cdot K$	EN 12667	
Tolerancia de espesor	T4 (-3 / +5)	mm / %	EN 823	
Reacción al fuego	Euroclase A1 'no combustible"		EN 13501-1	
Absorción de agua a corto plazo	≤ 1 (WS)	Kg/m²	EN 1609	
Absorción de agua a largo plazo	≤ 3 (WL(P))	Kg/m²	EN 12087	
Resistencia al flujo del aire	≥ 5* (AFr)	kPa·s / m²	EN 29053	
Factor de resistencia a la difusión de vapor agua	1 (µ)	-	EN 12086	

^{*} Ensayos internos.

Dimensiones, prestaciones térmicas

Anchura (mm)	1200			
Longitud (mm)	11.500	9.500	7.100	6.000
Espesor (mm)	50	60	80	100
Resistencia térmica (m².K/W)	1,40	1,70	2,25	2,85

Indicadores de impactos ambientales*:

Consumo de energía primaria renovable: 51 MJ

Consumo de energía primaria no renovable: 497 MJ

Potencia calentamiento global:

25 Kg CO₂ eq

Consumo de agua dulce:

 $0,15 \text{ m}^3$

^{*} Cálculos realizados tomando como unidad funcional 1 m³ y teniendo en cuenta solamenre la fase de fabricación.